Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12.

نویسندگان

  • A R Robbins
  • B Rotman
چکیده

Three genes, mgl A, B, and C, are required for active transport of substrate by the methylgalactose permease of E. coli K12. We report here that only two of these genes are required for substrate translocation, as seen by the ability or inability of isogenic mgl mutants (referred to as Tra+ and Tra minus, respectively) to grow on methyl-beta-D-galactopyranoside, supplied as sole carbon source. Individual mutants of both the Tra+ and Tra minus classes exhibited no detectable intracellular accumulation of methyl-beta-D-galactopyranoside; thus, the Tra+ phenotype cannot be explained by the mutants' levels of residual active transport. The phosphotransferase (Pts), the beta-galactoside (LacY), and the arabinose (Ara E and Ara F) transport systems are not required for substrate translocation by Tra+ cells. The Tra+ phenotype was identified with mutants defective in the mgl B, locus of the galactose-binding protein, by genetic complementation; the Tra minus phenotype was observed with both mgl A and mgl C mutants. The conclusion that the galactose-binding protein is not required for substrate translocation was supported by direct assays of the mgl mutants' binding protein activity. Mutants capable of translocation all showed reduced galactose-binding protein activity; mutants incapable of translocation exhibited binding protein activity equal to that of the mgl+ parent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galactose-Binding Protein by the Cell Cycle of Escherichia coli

The synthesis of the periplasmic galactose-binding protein of E. coli is regulated by events occurring during its cell cycle, and proceeds in synchronized cells for only a short period after cell division is completed. Transport activity mediated by the fl-methylgalactoside transport system follows closely the synthesis pattern of the binding protein. A mutant, E. coli BUG-6, exhibits temperatu...

متن کامل

Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane.

The active transport of maltose in Escherichia coli requires the products of five genes. These include a water-soluble periplasmic maltose-binding protein, three cytoplasmic membrane proteins, and an outer membrane protein. In order to evaluate the role of the maltose-binding protein in active transport, a nonpolar internal deletion of the structural gene for the maltose-binding protein was con...

متن کامل

Inhibition of methylgalactoside transport in Escherichia coli upon the cessation of unsaturated fatty acid biosynthesis.

The activity of the methylgalactoside transport system of E. coli is impaired upon treatment with 3-decynoyl-N-acetylcysteamine, an inhibitor of unsaturated fatty-acid synthesis. Treated cells are unable to be induced for permease activity, while transport sites synthesized before treatment show a regular loss of activity. The inhibition of methylgalactoside transport occurs at a step after tra...

متن کامل

Transport of sugars and amino acids in bacteria. IV. Regulation of valine transport activity by valine and cysteine.

The properties of the carrier for isoleucine in Escherichia coli were studied using cytoplasmic membrane vesicles (IM vesicles) prepared by the method of Yamato, Anraku, and Hirosawa (J. Biochem. 77, 705 (1975)). The IM vesicles exhibited respiration-dependent isoleucine transport activity which was more than 30-fold higher than that of "Kaback vesicles" prepared by our hand from the same strai...

متن کامل

Kinetic evidence is consistent with the rocker-switch mechanism of membrane transport by GlpT.

Secondary active transport of substrate across the cell membrane is crucial to many cellular and physiological processes. The crystal structure of one member of the secondary active transporter family, the sn-glycerol-3-phosphate (G3P) transporter (GlpT) of the inner membrane of Escherichia coli, suggests a mechanism for substrate translocation across the membrane that involves a rocker-switch-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 1975